Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 **Б**елгород (4722)40-23-64 **Б**рянск (4832)59-03-52 Владивосток (423)249-28-31 Киров (8332)68-02-04 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 **Екатеринбург** (343)384-55-89

Иваново (4932)77-34-06 **Ижевск** (3412)26-03-58 **К**азань (843)206-01-48 **К**алининград (4012)72-03-81 **К**алуга (4842)92-23-67 **Кемерово** (3842)65-04-62 **К**раснодар (861)203-40-90 **К**расноярск (391)204-63-61 **К**урск (4712)77-13-04 Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 **Набережные Челны** (8552)20-53-41 Нижний Новгород (831)429-08-12 **Н**овокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Пермь (342)205-81-47 **Ростов-на-Дону** (863)308-18-15 **Тверь** (4822)63-31-35
 Рязань
 (4912)46-61-64
 Томск
 (3822)98-41-53

 Самара
 (846)206-03-16
 Тула
 (4872)74-02-29
 Санкт-Петербург (812)309-46-40 **Тюмень** (3452)66-21-18 **С**аратов (845)249-38-78 **Севастополь** (8692)22-31-93 **Симферополь** (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

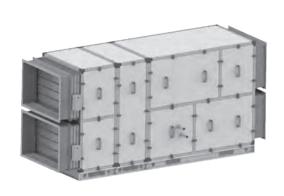
Сургут (3462)77-98-35 **У**льяновск (8422)24-23-59 **У**фа (347)229-48-12 **Х**абаровск (4212)92-98-04 **Челябинск** (351)202-03-61 **Череповец** (8202)49-02-64 Ярославль (4852)69-52-93

http://www.nevatom.nt-rt.ru || nmv@nt-rt.ru

ПРИТОЧНО-ВЫТЯЖНЫЕ УСТАНОВКИ НЕВАТОМ Технические характеристики

Схематичные обозначения элементов установок

1. ПРИТОЧНО-ВЫТЯЖНЫЕ УСТАНОВКИ NEVATOM


1.1. Общая информация

Приточно-вытяжные установки производства компании Nevatom используются в системах вентиляции и кондиционирования воздуха зданий и сооружений для создания и поддержания определенного микроклимата в помещениях различного назначения.

Комбинация отдельных функциональных секций позволяет сформировать вентиляционную установку под конкретные требования заказчиков, учитывая все особенности проекта.

Оборудование предназначено для использования в промышленных, административных, общественных и жилых зданиях, в «чистых помещениях», на объектах здравоохранения.

Компания Неватом изготавливает следующие типы вентиляционных установок:

Каркасно-панельные ПВУ – SALAIR.

Корпус каждой секции установок представляет собой каркас из алюминиевого профиля серии A25 и A45 с закрепленными на нем теплозвукоизолирующими трехслойными панелями.

Толщина панелей и все внутренние компоненты: фильтр, вентилятор, воздухонагреватель, воздухоохладитель, теплоутилизатор, шумоглушитель и т.д. могут быть подобраны в соответствии с требованиями заказчика.

Alatau

Бескаркасные ПВУ – ALATAU.

Корпус установок представляет собой бескаркасную конструкцию с толщиной панелей 50 мм. Панели соединяются друг с другом таким образом, чтобы вся внутренняя поверхность установки была совершенно гладкой.

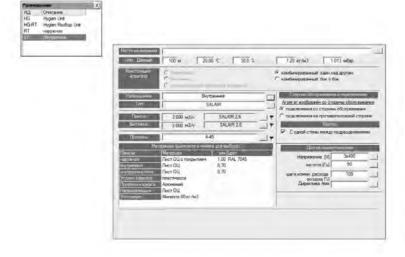
Neiva

Компактные ПВУ – NEIVA.

Корпус установок представляет собой бескаркасную панельную конструкцию с толщиной панели 50 мм или 25 мм (для серии UC/UCP). Для обеспечения минимальных габаритов все элементы установлены в едином корпусе.

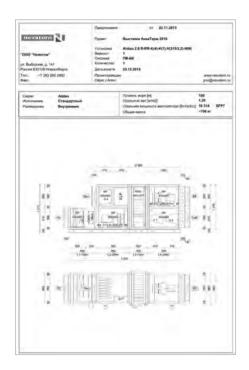
Изготавливаются в подвесном и напольном исполнении.

1.2. Подбор и расчет

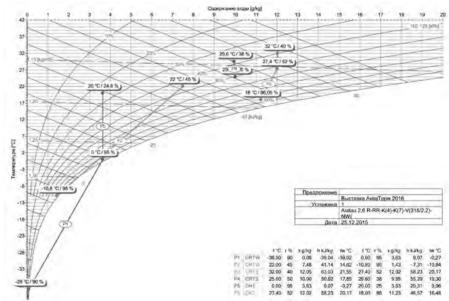

Установки HEBATOM разрабатываются с помощью сертифицированной Eurovent* программы проектирования оборудования для вентиляции и кондиционирования AirCalc++.

Основные преимущества применения программы AirCalc++:

- точный расчет функциональных блоков с подробными характеристиками;
- чертежи установок в разных проекциях, с возможностью конвертирования в AutoCAD;
- сохранение результатов расчетов и чертежей в архиве;
- простой способ передачи результатов расчетов и чертежей через интернет;
- передача расчетов на производство и формирование заказов на производство;
- расчет и построение шумовых характеристик вентиляторов;
- построение процессов в h-х диаграмме Молье;
- соответствие установок стандартам Eurovent*.


Подбор установок ведется в соответствии со следующими исходными данными:

- производительность установки по воздуху, $M^3/4$;
- остаточное давление на выходе из установки (сопротивление сети, на которую будет работать приточная часть), Па;
- температура теплоносителя °С;
- расчетные параметры наружного воздуха в холодный и теплый периоды;
- требования к воздуху в помещении по температуре °С и относительной влажности %;
- схема подогрева приточного воздуха (с теплоутилизацией или без нее);
- расчетные значения температуры приточного воздуха °С на разных этапах его нагревания;
- требования к шумовым характеристикам.



Результаты расчета выводятся на экран монитора сразу после подбора, кроме того, их можно сохранить в отчет в формате PDF. В программе имеется возможность экспорта 2D чертежей установки в основные известные форматы DWG, WMF для дальнейшего использования в проекте.

Программа AirCalc++ является эффективным и основным инструментом для проектировщиков вентиляционных систем. Позволяет в кратчайшие сроки произвести расчет установки и выставить коммерческое предложение.

В отчете содержится подробная информация о габаритных размерах и массе секций установки, аэродинамические, теплотехнические, гидравлические характеристики секций, акустические характеристики установки. При необходимости, в отчете может быть приведена цена установки, формируемая программой после завершения проектирования и расчета.

1.3. Классификация конструкций согласно требованиям стандартов Eurovent

1. Согласно требований стандарта EN 1886 (механические свойства)

Механическая прочность оболочки							
Класс механической прочности	Сопротивление максимальному рабочему давлению вентилятора						
D1	4	ДА					
D2	10	ДА					
D3	>10	ДА					

Стандартом EN 1886 установлены следующие классы воздухопроницаемости корпуса:

Воздухопроницаемость корпуса						
Класс воздухопроницаемости корпуса	Класс фильтра (EN 779)					
L1	0,15	0,22	Выше F9			
L2	0,44	0,63	F8-F9			
L3	1,32	1,9	G1-F7			

Проверка воздухопроницаемости (утечки воздуха) выполняется в зависимости от конструкции и номинальных режимов работы установки.

Допустимая величина утечки определяется по отношению к классу фильтра применяемого в установке:

Переток на фильтре при перепаде давления 400 Па						
Класс фильтра	G1-F5	F6	F <i>7</i>	F8	F9	
Максимальный уровень утечки байпаса фильтра k в % от объемного расхода	6	4	2	1	0,5	

Утечки воздуха в обход фильтра добавляются к общему количеству воздуха после секции фильтра, которое не подвергалось фильтрации. Это приводит к снижению эффективности фильтра, особенно если установлен фильтр высокой степени очистки, так как байпасный воздух не фильтруется.

Коэффициент теплоотдачи EN 1886						
Класс теплоизоляции Коэффициент теплоотдачи Вт/(м²*К) Качество панелей Возможность конденсации в						
Tl	K<0,5	Очень высокое	Очень низкое			
T2	0,5 <k<1,0< td=""><td>Высокое</td><td>Низкое</td></k<1,0<>	Высокое	Низкое			
Т3	1,0 <k<1,4< td=""><td>Среднее</td><td>Среднее</td></k<1,4<>	Среднее	Среднее			
T4	1,4 <k<2,0< td=""><td>Низкое</td><td>Высокое</td></k<2,0<>	Низкое	Высокое			
T5	Нет требований	Очень низкое	Очень высокое			

Для экономии энергии количество тепла передаваемого через корпус должно быть минимально. Термическое сопротивление корпуса важно не только с точки зрения потерь тепла, но и конденсации влаги, которая выпадает на корпусе установки.

Фактор тепловых мостов						
Класс	Фактор тепловых мостов	Возможность конденсации влаги				
TB1	0,75 <k<sub>B<1,00</k<sub>	Очень низкое				
TB2	0,60 <k<sub>B<0,75</k<sub>	Низкое				
TB3	0,45 <k<sub>B<0,60</k<sub>	Среднее				
TB4	0,3 <k<sub>B<0,45</k<sub>	Высокое				
TB5	Нет требований	Очень высокое				

Распределение температуры на поверхности корпуса не является однородным, на участках послабления она может упасть ниже температуры точки росы, что приведет к выпадению конденсата. Для оценки вводится фактор тепловых мостов.

2. Согласно требований стандарта EN 13053 (энергетическая эффективность)

Энергетическая эффективность климатической установки в соответствии с нормами DIN EN 13053, разработанными RLT (Немецкой ассоциацией производителей вентиляционного оборудования), обозначается метками «A+», «A», «В» и определяется по трем основным параметрам:

- классу скорости воздуха в поперечном сечении установки;
- классу энергопотребления вентилятора;
- классу эффективности теплоутилизатора.

Классы энергоэффективности в соответствии RLT EN 13053						
Параметры А+ А В						
	Без термодинамической обработки воздуха	V5	V6	V7		
Класс скорости воздуха в свободном сечении установки	С нагревом и/или теплоутилизацией воздуха	V4	V5	V6		
	С дополнительными функциями	V2	V3	V5		
Потребление мощности вентилятора			Р3	P4		
Утилизация тепла			H2	НЗ		

Для установок с теплоутилизатором стандарт дает рекомендации по определению класса энергоэффективности процесса утилизации от Н1 до Н6. В расчет принимается коэффициент утилизации тепла для сухого воздуха и аэродинамическое сопротивление теплоутилизатора.

При разработке климатических установок мы определяем класс энергоэффективности вентилятора, так называемый SFP (Specific Fan Power) в соответствии со стандартом DIN EN 13779.

Классы скоростей воздуха в соответствии с EN 13053									
Класс	V1	V2	V3	V4	V5	V6	V7	V8	V9
Скорость воздуха (м/с)	<1,6	1,6-1,8	1,8-2,0	2,0-2,2	2,2-2,5	2,5-2,8	2,8-3,2	3,2-3,6	>3,6

Класс энергопотребления вентилятора							
Класс	P1	P2	Р3	P4	P5	P6	P7
Потребление мощности вентилятора	<n*0,85< td=""><td><n*0,90< td=""><td><n*0,95< td=""><td><n*1,0< td=""><td><n*1,06< td=""><td><n*1,12< td=""><td><n*1,12< td=""></n*1,12<></td></n*1,12<></td></n*1,06<></td></n*1,0<></td></n*0,95<></td></n*0,90<></td></n*0,85<>	<n*0,90< td=""><td><n*0,95< td=""><td><n*1,0< td=""><td><n*1,06< td=""><td><n*1,12< td=""><td><n*1,12< td=""></n*1,12<></td></n*1,12<></td></n*1,06<></td></n*1,0<></td></n*0,95<></td></n*0,90<>	<n*0,95< td=""><td><n*1,0< td=""><td><n*1,06< td=""><td><n*1,12< td=""><td><n*1,12< td=""></n*1,12<></td></n*1,12<></td></n*1,06<></td></n*1,0<></td></n*0,95<>	<n*1,0< td=""><td><n*1,06< td=""><td><n*1,12< td=""><td><n*1,12< td=""></n*1,12<></td></n*1,12<></td></n*1,06<></td></n*1,0<>	<n*1,06< td=""><td><n*1,12< td=""><td><n*1,12< td=""></n*1,12<></td></n*1,12<></td></n*1,06<>	<n*1,12< td=""><td><n*1,12< td=""></n*1,12<></td></n*1,12<>	<n*1,12< td=""></n*1,12<>

Класс энергоэффективности теплоутилизатора						
Класс	H1	H2	НЗ	H4	H5	H6
Эффективность теплоутилизатора, %	>71	>64	>55	>45	>36	Не регламентируется

	Рекомендуемые скорости воздуха для секций установки						
Элемент	Особые условия	Оптимальная скорость	Максимальная скорость				
V	При высоте H < 1,0 м	1,5-2,0 m/c	< 4,5 m/c				
Установка	При высоте Н > 1,0 м	1,5-2,0 m/c	< 4,0 m/c				
	На всасывании	2,2 ÷ 2,5 м/c	< 2,5 m/c				
Воздухозаборная решетка	На нагнетании	> 3,6 m/c	< 4 m/c				
	На всасывании	> 3,6 m/c	< 4,5 m/c				
Воздухозаборный козырек	На нагнетании	> 3,6 m/c	< 6 m/c				
	На всасывании	3,2 ÷ 3,6 м/c	< 3,5 m/c				
Каплеуловитель	На нагнетании	> 3,6 m/c	< 5 m/c				
Воздушн	ый клапан	> 3,6 m/c	< 8 m/c				
Воздушн	ый фильтр	3,2 ÷ 3,6 м/c	< 4 m/c				
Воздухоно	Воздухонагреватель		< 4 m/c				
Воздухоохладитель		2,2 ÷ 2,5 м/c	< 2,5 m/c				
Теплоутилизатор		2,2 ÷ 2,5 м/c	< 2,5 m/c				
Увлаж	нитель	2,2 ÷ 2,5 м/c	< 2,5 m/c				

Все расчеты и определение классов энергоэффективности реализованы в программе по подбору климатических установок, которую использует наша компания. Вместе с основными техническими характеристиками подобранной установки предоставляется достоверная информация о том, к какому классу энергоэффективности она относится.

2. ПРИТОЧНО-ВЫТЯЖНЫЕ УСТАНОВКИ СЕРИИ SALAIR И ALATAU

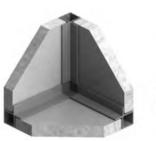
2.1. Обозначение

Пример обозначения установок:

Salair 3,5 R-V-K(4)-V(40/2,2)-R – вытяжная установка SL 3,5, внутреннего расположения, карманный фильтр (класс фильтрации G4), вентилятор (диаметр колеса 400 мм и мощность электродвигателя 2,2 кВт).

Salair 2,3 R-P-K(4)-NW(45,5)-OF(10,3)-V(28/1,1)-L – приточная установка SL 2,3, внутреннего расположения, карманный фильтр (класс фильтрации G4), нагреватель водяной (мощность 45,5 кВт), охладитель фреоновый (мощность 10,3 кВт), вентилятор (диаметр колеса 280 мм и мощность электродвигателя 1,1 кВт), левого исполнения.

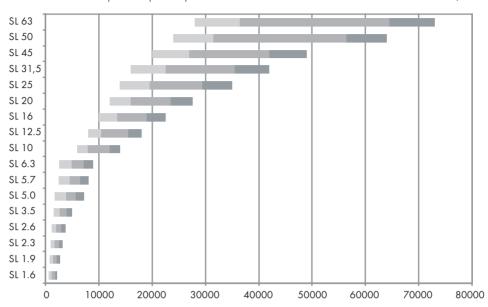
Salair 2,6 R-RR -K(4)-NW(48,7)-OF(12)-V(31/1,1) / K(4)-V(31/1,1)-L – приточно-вытяжная установка SL 2,6, для внутреннего размещения, оборудованная роторным рекуператором; в состав приточной части входят: фильтр карманный (класс фильтрации G4), нагреватель жидкостный (мощность 48,7 кВт), охладитель фреоновый (мощность 12 кВт), вентилятор (диаметр колеса 310 мм и мощность электродвигателя 1,1 кВт); в состав вытяжной части входят: фильтр карманный (класс фильтрации G4), вентилятор (диаметр колеса 310 мм и мощность электродвигателя 1,1 кВт). Сторона обслуживания – слева.


2.2. Приточно-вытяжные установки серии Salair

Корпус установок Salair изготавливается по каркасно-панельному принципу на базе профильных конструкций, что позволяет сделать их достаточно легкими и в то же время очень прочными.

Преимущества:

- каркас установки выполнен из алюминиевого профиля;
- для соединения профиля между собой используются пластиковые уголки;
- секции между собой соединяются с помощью соединительного профиля;
- трехслойные закрепленные и съемные панели (толщиной 25 и 45 мм).


Механические и термические свойства корпуса

T	T	Фактор	П	Класс утечки возд	цуха через корпус
Іолщина панели	Іолщина панели	тепловых мостиков	Переток на фильтре (%)	При -400 Па	При +700 Па
25 мм	T4	TB4	F7(1,6%)	L3	L3
45 мм	Т3	TB4	F9 (0,45%)	L2	L3

Толщина панели	Толщина внутренней и внешней стенки панели, мм	Тип/плотность теплоизоляционного материала, кг/м³	Класс прочности корпуса	Класс огнестойкости изоляции
25 мм	1,0/0,75 — 1,0/1,25	Мин. Вата/80	D2	Αl
45 мм	1,0/1,0 - 1,25/1,25	Мин. Вата/80	D2	Αl

Характеристика корпуса по звукоизоляции.											
Толщина панели	Октавная полоса частот (Гц)	125	250	500	1000	2000	4000	8000			
25 мм	C (5)	12	18	25	25	27	30	32			
45 мм	Степень звукопоглощения (дБ)	18	25	27	29	29	31	34			

Стандартный ряд имеет 17 типоразмеров производительностью от 800 до 73000 м³/ч.

Габаритные (наружные) размеры

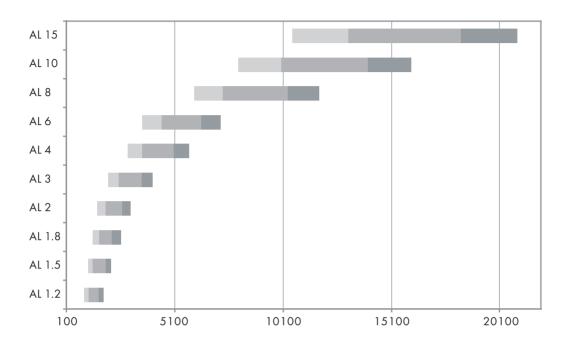
вки	M H G		сечения, м		Длина секций L, мм							
Наименование установки	Толщина стенки, мм	В ширина	Н высота	F (K/D)	NW	NE	OW, OF	V	RR	RP	KR	Х
SL1.6	25	720	520	470/300	330	300500	450	7001000	420	400500	250300	8001200
SL1.9	25	720	570	470/300	330	300500	450	7001000	420	400600	250300	8001200
SL2.3	25	820	570	470/300	330	300500	450	7001000	420	400600	300500	8001200
SL2.6	25	820	620	470/300	330	300500	450	8001100	420	600700	300500	8001200
SL3.5	25	920	670	470/300	330	300500	450	8001100	420	600800	300500	8001200
SL5.0	45	1020	770	500/300	330	300600	450	9001200	460	6001000	500 <i>7</i> 00	8001200
SL5.7	45	1135	790	500/300	330	300600	450	9001200	460	6001000	500700	8001200
SL6.3	45	1235	790	500/350	330	300600	450	9001200	460	7001000	500700	8001200
SL10	45	1330	1160	500/350	400	400700	550	10001400	500	10001200	600800	8001200
SL12.5	45	1330	1460	500/350	400	400700	550	11001600	500	10001200	600800	8001200
SL16	45	1635	1460	500/450	400	400700	550	14001900	500	10001600	<i>7</i> 00900	8001200
SL20	45	1940	1460	500/450	400	400700	550	16002300	500	10001600	<i>7</i> 00900	8001400
SL25	45	1940	1760	500/450	400	400700	550	16002300	500	10001600	9001100	8001400
SL31.5	45	1940	2060	500/450	400	400700	550	18002300	500	12002000	9001100	8001400
SL45	45	2245	2060	500/450	400	400700	550	20002300	500	12002000	11001300	8001400
SL50	45	2260	2550	500/450	400	400700	550	20002300	500	12002000	12001500	8001400
SL63	45	2560	2750	500/450	400	400700	550	20002300	500	12002000	14001600	8001400


2.3. Приточно-вытяжные установки серии Alatau

Корпус установок Alatau представляет собой бескаркасную панельную конструкцию, плотно состыкованную замковыми соединениями. Соединение панелей между собой осуществляется без применения профильных конструкций.

Преимущества:

- самонесущая и легкая панельная конструкция, обеспечивающая минимизацию фактора тепловых мостов между окружающим и обрабатываемым воздухом;
- гладкая внутренняя поверхность установки;
- замковые соединения панелей обеспечивают однородность и герметичность стыков;
- уменьшение величины вибрационных нагрузок и звукового давления;
- трехслойные панели толщиной 50 мм;
- отдельные составные модули герметично соединяются между собой посредством болтовых соединений, которые закрываются пластиковыми элементами;
- снижена возможность образования конденсата на внутренних поверхностях установки;
- наличие заключения санитарно-эпидемиологической экспертизы.


Механические и термические свойства корпуса

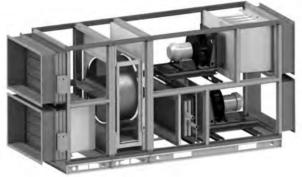
Толщина панели	Толщина внутренней и внешней стенки панели, мм	Тип/плотность теплоизоляционного материала, кг/м³	Класс прочности корпуса	Класс огнестойкости изоляции
50 мм	-1,0/0,7	Мин. Вата/80	Dl	Αl

Характеристика корпуса по звукоизоляции										
Толщина панели	Октавная полоса частот (Гц)	125	250	500	1000	2000	4000	8000		
50 мм	Степень звукопоглощения (дБ)	20	36	35	36	40	40	35		

Толщина панели	V	Фактор тепловых	П 9/	Класс утечки воздуха через корпус		
	Класс теплоизоляции	мостиков	Переток на фильтре, %	При -400 Па	При +700 Па	
50 мм	Т2	TB2	F9 (0,39%)	L1	L1	

Стандартный ряд имеет 10 типоразмеров производительностью от 800 до 20 000 ${\rm M}^3/{\rm u}$.

Габаритные (наружные) размеры


вание	іна , мм		сечения, м				Д	 лина секций	., MM	мм			
Наименование	Толщина стенки, мм	В ширина	Н высота	F (K/D)	NW	NE	OW, OF	V	RR	RP	KR	Х	
AL1.2	50	<i>7</i> 60	560	500/300	330	300500	450	7001000	460	400500	250300	11001300	
AL1.5	50	<i>7</i> 60	610	500/300	330	300500	450	7001000	460	400600	250300	11001300	
AL1.8	50	860	610	500/300	330	300500	450	7001000	460	400600	300500	9501500	
AL2	50	860	660	500/300	330	300500	450	8001100	460	600700	300500	9501500	
AL3	50	960	710	500/300	330	300600	450	8001100	460	600800	300500	9001200	
AL4	50	1020	770	500/300	330	300600	450	9001200	460	6001000	500700	10501350	
AL5	50	1135	790	500/300	330	300600	450	9001200	460	6001000	500700	10501350	
AL6	50	1235	790	500/300	330	300600	450	9001200	460	7001000	500700	10001400	
AL8	50	1250	1050	500/300	400	400700	500	10001400	500	10001200	600800	10001400	
AL10	50	1250	1350	500/300	400	400700	500	11001600	500	10001200	600800	10001500	
AL15	50	1550	1390	500/300	400	400700	500	14001900	500	10001600	700900	11001400	

2.4. Особенности конструкции, компоновки и исполнения

КОМПОНОВКА

По конструктивному исполнению каркасно-панельные установки в зависимости от пожеланий клиента могут быть моноблочные или модульные (секционные).

Моноблочная конструкция:

- все необходимые элементы и секции смонтированы внутри общего корпуса;
- более низкая стоимость установки (относительно секционной), за счет компактного расположения элементов и меньшего расхода профиля и комплектующих;
- выполнен внутренний электромонтаж и подключение всех элементов установки;
- возможна установка щита управления и частотных преобразователей внутри корпуса установки. В этом случае установка имеет законченное техническое решение, необходимо только подвести все необходимые энергоресурсы и подключить вентиляционную систему.

Секционная конструкция:

- установка состоит из набора последовательно установленных и соединенных между собой отдельных секций и моноблоков;
- удобство доставки и удобство монтажа в труднодоступных местах и ограниченном пространстве;
- сборка ПВУ происходит непосредственно на месте установки. Секции соединяются при помощи специальных винтовых соединений, обеспечивающих требуемое положение и плотное прилегание секций.

Состав и последовательность устанавливаемых секций зависит от требований, предъявляемых к технологии обработки воздуха, месту его установки и параметрам воздушной среды.

ИСПОЛНЕНИЯ

Внутреннее исполнение:

Это основной вариант изготовления приточно-вытяжных установок. Предназначены для установки и работы в помещениях венткамер и других закрытых пространствах, а также непосредственно в обслуживающих помещениях. Подключение трубопроводов и электрических соединений осуществляется снаружи установки.

Наружное исполнение:

Приточно-вытяжные установки наружного исполнения применяют в системах вентиляции, в которых отсутствует возможность внутреннего размещения оборудования. Установки наружного исполнения располагают снаружи здания на специальных площадках или на кровле.

Наружное исполнение имеет следующие особенности:


- панели имеют большую толщину и снаружи окрашены порошковой краской;
- имеет защитную крышу и загнутые козырьки для входа наружного воздуха и выхода вытяжного;
- все стыки герметизируются снаружи;
- при необходимости входной воздушный клапан может быть расположен внутри установки.

Санитарно-гигиеническое исполнение:

Приточно-вытяжные установки медицинского исполнения предназначены для использования в системах, к которым предъявляются специальные требования по гигиеническому состоянию внутренних поверхностей установок, а также повышенные требования к тепло- и шумоизоляции.

Предусмотрена возможность регулярной чистки и дезинфекции всех внутренних поверхностей установки. Материалы деталей являются экологически чистыми и инертными к промывочным и дезинфицирующим растворам. Внутренние полости установок окрашены порошковой эмалью или выполнены из нержавеющей стали, не накапливают статическое электричество.

В зависимости от местоположения зоны обслуживания приточно-вытяжные установки могут быть правого и левого исполнения.

Правое исполнение – зона обслуживания на правой стороне установки по ходу движения воздуха.

Левое исполнение – зона обслуживания на левой стороне установки по ходу движения воздуха.

Инспекционные двери

- для обеспечения герметичности и улучшения шумоизоляции используются специальные уплотнительные ленты:
- смотровые двери расположены на регулируемых петлях или закреплены прижимами;
- конструкция корпуса может быть со смотровыми окнами, внутренним освещением секций и т.д.

Архангельск (8182)63-90-72
Астана (7172)727-132
Астрахань (8512)99-46-04
Барнаул (3852)73-04-60
Белгород (4722)40-23-64
Брянск (4832)59-03-52
Владивосток (423)249-28-31
Волгоград (844)278-03-48
Вологда (8172)26-41-59
Воронеж (473)204-51-73
Екатеринбург (343)384-55-89

Иваново (4932)77-34-06

Ижевск (3412)26-03-58

Казань (843)206-01-48

Калининград (4012)72-03-81

Калуга (4842)92-23-67

Кемерово (3842)65-04-62

Киров (8332)68-02-04

Краснодар (861)203-40-90

Красноярск (391)204-63-61

Курск (4712)77-13-04

Липецк (4742)52-20-81

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04

Пенза (8412)22-31-16

Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13

Тверь (4822)63-31-35
Томск (3822)98-41-53
Тула (4872)74-02-29
Тюмень (3452)66-21-18
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Ярославль (4852)69-52-93

Сургут (3462)77-98-35

http://www.nevatom.nt-rt.ru || nmv@nt-rt.ru